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We derive asymptotic formulas for convolution operators with spline kernels for
differentiable functions. These formulas are analogous to Bernstein's extension of
Voronovskaya's results on Bernstein polynomials for functions with higher order
derivatives. Two classes of operators are considered, viz., the de la Vallee Poussin­
Schoenberg operators with trigonometric spline kernels and the singular integrals of
Riemann-Lebesgue with periodic polynomial spline kernels. The former includes
the de la Vallee means as a special case. '" 1995 Academic Press. Inc.

1. INTRODUCTION

The variation diminishing spline operators or Bernstein-Schoenberg
operators for continuous functions are a spline extension of the Bernstein
polynomial operators. Their properties are reminiscent of those of the
Bernstein polynomials. They were introduced by Schoenberg [15], where
among other results an analogue of Voronovskaya's formula on the
asymptotic behaviour of the operators for twice differentiable functions was
stated. Recently Marsden and Riemenschneider [II] (see also [7]) gave
an extension of the asymptotic formula for functions with higher order
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derivatives; an extension which was in line with Bernstein's extension of
Voronovskaya's result for the Bernstein polynomial operators [I].

The de la Vallee Poussin means of a 2n-periodic integrable function /;

where

1 I"Vm(f; x) := -2 f{t) wJx- - t) dt,
n _"

(m!)2 .
wm(x):= L ( )' (. )' e

IV

\,

v=-m m-v. m+v.

xE[O,2n),

XER,

(1.I )

( 1.2)

and m a positive integer, are trigonometric analogues of the Bernstein poly­
nomials. They are shape-preserving trigonometric convolution operators
[13]. A spline extension of the de la Vallee Poussin means consists of the
convolution operators

where m, k are positive integers with k? 2m + I and

,(x) == 'm. k(X) := L f"e ivx

VEZ

with Fourier coefficients

{

(m'j' (,in!m - ,j h/2 ,in h/2)(,in(m + 'j hi2 'in hl2j
• (m -v)! (m + v)! (sin 11/2.,. sin mll/2)2 '
r =

I' k(m!)2 sin( \' - m) h/2 sin( v - m + 1) h/2·· . sin( II + m) h/2

n( II - m) , .. (v +m)( sin 17/2 ... sin mh/2)2 '

(1.3)

(1.4 )

Ivl~m

Ivl>m,

(1.5 )

where h := 2n/k. The function r"'. k is a trigonometric B-spline of degree m
[16, 5]. We shall call T", the de fa Vallee Poussin-Schoenberg operators. If
k = 2m + I, they reduce to the de la Vallee Poussin means.

A related sequence of operators is the sequence of singular integrals of
Riemann-Lebesgue (see [2, p. 54]),

(1.6)
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which are convolution operators in which the kernels are defined by their
Fourier series expansions

(
sin hV/2)n .

bll.k(x):= L. hv/2 e'V ',
VEZ

xER, (1.7 )

where n, k are positive integers and h := 2n/k. The functions bll.k are the
periodic polynomial B-splines of degree n - I supported on the interval
[ - nh/2, nh/2 J (see [12J and also Section 4).

The following asymptotic formula for the de la Vallee Poussin means of
a twice differentiable function is due to Natanson (see [8, p. 115J).

THEOREM 1.1 (Natanson). Ifjl 21(x) exists,

lim (m + 1){ V",(f; x) - f(x)} =fl2l(.'().
nt-- ,y_

(1.8)

This is a trigonometric analogue of Voronovskaya's estimate for Bernstein
polynomials. In line with Schoenberg's extension of Voronovskaya's
theorem to variation diminishing spline operators, it was shown in [6 J
that the following holds for the de la Vallee Poussin-Schoenberg operators
T",. k(f; .) ift 21(x) exists,

lim (m + I){ T",. k(f; x) - f(x)} = (I - ~ cot ~)l2)(X)' (1.9)
",-~ 2 2
mh-C(

where the limit is taken as m ....... ex and mh ....... (X E (0, n].
Our object is to derive asymptotic formulas for the de la Vallee

Poussin-Schoenberg operators and the singular integrals of Riemann­
Lebesgue for higher order differentiable functions, in the same vein as
Bernstein's extension of Voronovskaya's estimate for Bernstein polyno­
mials, and Marsden and Riemenschneider's extension of Schoenberg's
result on Bernstein-Schoenberg operators. The main theorems are stated in
Section 2. A preliminary result on the asymptotic behaviour of a sequence
of positive convolution operators with even kernels is given in Section 3. It
depends on the asymptotic estimate for the trigonometric moments of their
kernels. A detailed analysis of the asymptotic behaviour of the tri­
gonometric moments of the periodic polynomial B-splines bll. k> together
with the proofs of Theorems 2.1, 2.2, and 2.3 are given in Section 4. The
proof of Theorem 2.4 for the de la Vallee Poussin-Schoenberg operators is
analogous to that of Theorem 2.1. Although the computations are more
involved the analysis of the asymptotic behaviour of the trigonometric
moments of r",. k is the same as that for bII. k' and the details will be
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omitted. However, the same method does not work for Theorem 2.5. In
this case an asymptotic estimate for the trigonometric moments of the
trigonometric B-spline kernels is obtained via their recurrence relation.
This is given in Section 5.

2. THE MAIN THEOREMS

To state the main theorems we require the combinatorial numbers which
are the coefficients in the expansion of the central factorial polynomials,

{

11-1 ( )
x IT x--

2
n

+j ,
X[l1] := J~ I

1,

n>O

n=O,

(2.1 )

where n > 0 is the degree of the polynomial X[l1]. The coefficients t(n,}) in
the expansion

II

X[II] = I t(n,}) ;>J,
J=O

(2.2)

are called the central factorial numbers of the first kind (see [14, p. 213]).
In (2.2), No denotes the set of nonnegative integers. We shall also use N
for the set of natural numbers.

The asymptotic formulas for the convolution operators involve the tri­
gonometric moments of their kernels. For an even 2n-periodic integrable
function ¢, its trigonometric moment of order 2j, j E No, is defined by

(2.3 )

For s, v E N, let

I (-I)J+Vt(2j,2v)
a,.,(¢;) :=2:: (2')! M 2J (¢;),

J~\' )

and let C2" denote the class of continuous 2n-periodic functions. We shall
prove the following theorems.

THEOREM 2.1. Suppose n, SEN wilh S < n. IffE C2" and its derivatives up
10 order 2s exist at x E ( - n, n), then

1 {,-1 }lim ~ R (f' x)- ~ a (b )fI2V )(x) =(-I)'[J"(121)(x)
h---+oh2s ll'~ ~o S,\-' n,k ~ . s.·',

v=

(2.4)
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where P;' is a polynomial in n of degree s with leading coefficient
( -1 y/( 4! r s!. Further, P~ can be evaluated by the following algorithm:

For KEN,

and for r = 2, 3, ..., n,
K

P::= I p:~lvp~,·
v=o

(2.5 )

(2.6)

THEOREM 2.2. Suppose SEN. If fE C1rr and its derivatives up to order 2s
exist at x E ( - n, n), then

1 { ,S-I} (I )'/11S)(X)
lim (}2), R,,(f;x)- I as• v(b".djl1V'(x) = 4' -.-,'-.

::,;::~ 11 1 . v = 0 . 5 .

(2.7)

THEOREM 2.3. If f E Cbr and its derivatives up to order 2s exist at x E

(-n, n), then

(2.8)

where the limit is taken as n --> CI;) and nh -> P> O.

Corresponding to Theorems 2.1 and 2.3 we have the following results for
the de la Vallee Poussin-Schoenberg operators TIl/.k' However, we are
unable to obtain a similar result for Tnt. k corresponding to Theorem 2.2.

THEOREM 2.4. Suppose m, sEN with s < m. IffE C1n and its derivatives
up to order 2s exist at x E ( -n, 11:), then

liml-{T (f'x)_s~la (r )J'(2V)(X)}=(-1)SlXll/fI1S )(X) (2.9)
h2s m. k .,.. ~ s, v m. k ~ ,,> r,

h--+O v=o

where lX~r is a polynomial in m of degree s with leading coefficient
(-1)'/(3! 2)" s!. Further, IX~ can be evaluated by the following algorithm:

For KEN,

(2.10 )
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and for r = I, ... , m,

(2.11 )

THEOREM 2.5. If fE C 2n and its derivatives up to order 2s exist at
xE(-n,n),

(2.12 )

where the limit is taken as m --'> CIJ and mh --'> IX E (0, n].

The special case of Theorem 2.5 with k = 2m + I or h = 2n/(2m + I) gives
the following result on the asymptotic estimate for the de la Vallee Poussin
means VmU; x) for functions with higher order derivatives. In this case
Tm . k = Vm and IX = n.

COROLLARY 2.1. If fE C2n and its derivatives up to order 2s exist at x E

(-n, n),

(2.13 )

3. POSITIVE CONVOLUTION OPERATORS WITH EVEN KERNELS

For n E N, let

I fn
KnU;x) :=-2 f(t)kn(x-t),

n -n
(3.1 )

be a sequence of positive convolution operators with even kernels k n which
are nonnegative and normalized so that

I In
2n -n kn{t) dt = 1. (3.2 )

The asymptotic formulas for K n involve the trigonometric moments of its
kernel kn- We shall require the following Taylor expansion (see [4, 19]),

. P ~ 1 J·2"1· p! 2 . + "J'(arc Sin x) = t... (- ) -. . , t(p+ j,p)xP -,

j~O (p+2j).
Ixl < 1, (3.3)
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where pEN. For even p, (3.3) can be written in the form

It I< n, (3.4 )

where tin,)~ are the central factorial numbers.
We observe that for) EN, X[2j] = rrf~~ (x 2_/ 2). Therefore,

2i i-I
L t(2), v) XV = TI (x 2 _/2).
V~O I~O

(3.5)

It follows that t(2), 2) = I and t(2), 0) = t(2), 2v - I) = 0, for all v. Further­
more, t(2m, 2v) satisfy the following partial difference equation:

t(2m + 2, 2v) = t(2m, 2v - 2) -m2t(2m, 2v),

with initial conditions

(3.6 )

t(2, 0) = 0, t(2, 2) = 1. (3.7)

In Eq. (3.6) which is readily obtained from (3.5), we have assumed that
t(2m, 2v) = °for v < °or v> m. It follows easily from (3.5) that

sgn(t(2), 2v)) = (-1 )i+"

Hence the series in (3.4) is a positive series.

v=I,2, ...,j.

THEOREM 3.1. Suppose for) EN, the limit lim" ~Y'c ni M2ik,,) exists and

lim ni M 2i(k,,) = Ai'
n--l>X,

Iff E C2" and its derivatives up to order 2s exist at x E ( -n, 1!), then

{

s-I } j<2sl(X)
lim n' K,,(f; x) - Las. v(k,,)f(2V)(X) = 2" --,-.
,,~oo V~O (2s).

Proof For t E ( -n, 1!), Taylor's formula about x gives

(3.8)

(3.9)

s Ji2vl(X) ,-1 j<2v+ 1)(X) ,
f(x + t) = L --I t 2v + L ' , t2>+ 1 +g(t) t2", (3.10)

V~O (2v). V~O (2v + I).
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where g is continuous and lim, ~ 0 g{ t) = O. Using (3.4) one can express

Since k" is even, (3.11 ) leads to

where

S if- t{2J' 2v)
S := '\' /12v)(X) '\' (_I)J+v ' M .(k) (3.13)

I." 1... .1... (2')! 2J II'

v=o J=s+ 1 J

1 ."
S2." :=-2 j g(t) k"U) t 2

-' dt. (3.14)
n· _"

Therefore,

jl2'\X) . s "
= ..1,. ---+ hm n Sl ,,+ hm n S, II" (3.15)

. (2s)! ,,~,yj • 1l~ yj -.

The first limit on the right of (3.15) is zero. To prove this, we observe
that

n' (t)2 i

O~-2 f" 2sin-
2

kll(t)dt~n'M2i{k,,).
n 1,,,(,;";1'1";" .

Hence (3.8) implies that

n' (t)2i
lim - 2 sin - kn{t) dt = 0,,,~ y. 2n ri"';;;"; 1'1";" 2

For any e > 0, choose N so that

n
S (t)2i

-2 f", 2sin- k,,{t)dt<e,
n iiv;;;";lrl,,;,, 2

s=o,I, ...,j-1.

n~N.
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Then

It follows from (3.13) that

x, t(2}' 2v) (I)J-.,·
In'Sl.nl:(C L (-I)JP '. I -

J~.,+I (2)). n

~ (-I )J+J' t(2j, 2v)
1.. (2j)! '

J~,+I

+Cf.

where C is a constant independent of n. Since the series

converges absolutely and f. is arbitrary, it follows that

lim n"S'.n = O.
/t- cc

To show that the second limit is also zero, let f. > O. Choose 15 > 0 such
that Ig( t) I < f. whenever 1tl < 15, and write

(3.16 )

where

Because of the inequality l:( n sin ~ l, t E [0, nJ,

f. (n)2'II) I :( 2n"2 n'M 2.,(kn ) (3.17 )
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which is arbitrarily small, since n'M2 ,(kn ) is bounded. On the other hand,

n' Ilgll (n)2I'+ I)

:( 2nJ2 2" M 21 -,+ I)(k,,) (3.18 )

which tends to zero as n~ OC, by (3.8). Hence lim,,_x fr'S2." =0. I

In order to establish the main theorems we need only to study the
asymptotic behaviour of the trigonometric moments of the periodic poly­
nomial B-splines b". k and the trigonometric B-splines r m. k'

4. TRIGONOMETRIC MOMENTS OF PERIODIC POLYNOMIAL B-SPLINES

Let M I := XI-I/2. 1/2] be the characteristic function of the interval ( -1,1]
and for n = 2, 3, ..., let M,,: = M I * M fl _ I be the uniform polynomial
B-spline of degree n - I (see [21, 22]). Here * denotes the operation of
convolution. The Fourier transform of M" is

• _ (Sin U/2)"
M,,(u) - u/2 .

Let k be a positive integer, h := 2n/k and for n = 1,2, ..., we define the
uniform 2n-periodic polynomial B-spline of degree n - 1 by

b".k(X):= I kM,.(h- l (x-2nv)),
fEZ

XER. (4.1 )

The Fourier coefficients of b". k can be computed from the Fourier trans­
form of M n' viz.,

Therefore,

• • (Sin hV/2)"
b".k(V)=M,,(hv)= hv/2 '

bfl. k( x) = I b". k( v) e
i
"'.

i'E Z

VEZ. (4.2)

(4.3 )

The function b".k(X) is even, positive, and 2n-periodic. Further, b".k(O) = I
and b".k(V)~ 1 as k~ w (i.e., h~O) for all VEZ.
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Let cr EN. For an even 2n-periodic integrable function k n , its tri­
gonometric moment of order 2cr can be expressed as

2a (2cr) . AM 2".(k,.)=(-I)a I . (-l)Jk,,(cr-j).
j~O j

(4.4)

The relation (4.4) is obtained from the definition (2.3) by expressing
2 sin 1t in terms of exponentials and then expanding the resulting expres­
sion by binomial expansion. By (4.4), the trigonometric moments of the
periodic B-spline kernel b". k are given by

where

(4.5)

I '. h ._ (Sin((cr- j ) hI2))'
B(,j, ).- (cr-j)hI2 ' 1=1,2, ...,n; j=O,I, ... ,2cr. (4.6)

For 1= 1, 2, ... ,n andj=O, 1, ..., 2cr, we define a sequence (B 2K(l,j))KENO by

ex

B(l,j;h)=: I B 2K(l,j)h 2K
.

,..-=0

LEMMA 4.1. For 1= 1, 2, ..., nand j = 0, 1, ..., 2cr,

(4.7)

where

andfor 1=2, 3, ..., n,
K

f3~ = I f3~_---lvf3~·
v=o

Proof For 1= 1, we have

(4.8)

(4.9)

(4.10)

B(1 ··h)=sin((cr-j )hI2).
,j,. (cr - j) hl2
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If j #- a, expanding the sine function in powes of h gives

It follows that

( I)h-( ')2K
B (I') - a-j Pl( .)2K

2K ,j = (2K+1)!2 2K = Ka-j ,

where

Note that forj=a, B(l,O';h)=I, and again (4.11) holds.
Suppose that for 1< n,

From (4.6),

. . sin((a - j) h/2)
B(l+l,j;h)=B(l,j;h) (O'-j)h/2 .

Expanding the second factor in powers of h and using (4.7) leads to

Taking the Cauchy product gives

It follows from (4.7) that

and, using (4.12), a straightforward computation leads to

(4.11 )

(4.12)
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LEMMA 4.2. Let j EN, and for any r EN let

5) r) := I vj
- I.

,,~I

Then 5j (r) is a polynomial in r of degree j with leading coefficient I/j.

Proof For r ~ I,

5)r) - 5j (r - 1) = r j
- I

which is a difference equation for which the solution is of the form

}

5 j (r) = I aJ",
v=o

where a" are constants. Therefore,

r/-
1

= 5 j (r) - 5 j (r -I) = "tl a" :t: (-I r-1-1C) r
l

=/i'{ ± (-I)"-la,,(~)}(-I)lrl.
I~O v~l+ I

Equating the coefficient of r j
- I gives aj = IIJ. I

LEMMA 4.3. Let KENo. For 1= 1, 2, ..., n,

( -I )' I'
fJ~ = (4')' K! +polynomial in I of degree < K. (4.13)

Proof We shall establish the result by induction on K using (4.9) and
(4.10). For K =0, Bo(l,j) = I. Hence fJ~ = I for all I. By (4.10),

for I ~ 2. Repeated application of (4.14) gives

fJ
I - fJI _ (1- I) _ ( - I) I
1- 1 3! 22 - 4!

(4.14)

for any I ~ 1, by (4.9). Hence (4.13) holds for K = I. Suppose it holds for
K<S and for all I~ I. Using (4.10) and noting that fJ6= 1, we have

fJ{_fJ{-l= I fJ:=~fJ!
,,=]

(4.15 )
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for any integer j ~ 2. Summing (4. 15) for j from 2 to lleads to

(4.16 )

Applying the inductive hypothesis to the summand on the right of (4. I6)
leads to

fJ ' fJI- ~ (fJ i - 1 (-I)+fJJ-1 I + fJ6-
1(-n')

,- ,-~, :,-1~ .'-2 5' 22 ... +':"-(2~s-+-I)-!~2~2'
}--

( I)' I
- " {(. 1)'-1

(4!)'(s-I)!/::2 J-

+polynomial in (j - I ) of degree < s - I}.

By Lemma 4.2, the leading term in L/i ~2 (j - 1)' -I is I'ls. It follows from
(4.17) that

(-I r I'
pi = . + polynomial in I of degree < s. I

., (4!)" s!

LEMMA 4.4. For /I: E Nand 1= 1,2, ... ,

(4.18 )

Proof By (4.9), it is clear that the inequality (4. I8) holds for I = I and
for all /I: E No. Suppose that it holds for 1= n and for all /I: E No. Then by
(4.10) and the inductive hypothesis,

"'=0

~~ , (''')(!)''
/I:! 2' I v n1=0

A straightforward simplification of the expression on the right of the last
inequality leads to

IfJ/l+II~(n+I)'
, /I:! 2'

The result now follows by induction. I
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LEMMA 4.5. For any a EN,

as nh 2
--+ O. (4.19)

Proof Using (4.5), (4.7), and (4.8), we have

Since

(4.20)

for v = 0, ..., 2a - 1

and

2a (2a)L (- 1)i . /a = (2a)!,
j~O )

it follows from (4.20) that

(4.21 )

It remains to show that

y~

L p~(a_j)2/o:h2'=O(na+lh2a+2)

..... =0"+\

By (4.18),

as nh 2
--+ O. (4.22)

I
f p~(a_jf/o:h2/o:1::::; I (aK~~t(nh2)'

~=a+1 ~=a+l

= (nh 2 )a+ I I
J.;=a+ L

(a ')2/0:
- ] (nh 2 )"-a-1

K!Y

if nh 2 < 1.

This proves (4.22) and, hence, (4.19) follows from (4.21). I
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Proof of Theorem 2.1. Suppose 11 is fixed and S<I1. By (4.19) we have

The result now follows immediately from Theorem 3.1. I

Proof of Theorem 2.2. By (4.19) and (4.13)

J{-l)"I1" }
M ls(h". k) = (-1)\ (2s)! 1 (41)" s! + a polynomial in 11 of degree < s h1

"

Hence

lim _1_ M h =~
( / 1),' lJ II. k) (·4')'\'"

"h - 0 111 . S.

and Theorem 2.2 follows from Theorem 3.1. I

The proof of Theorem 2.3 is the same as that of Theorem 2.2.

5. TRIGONOMETRIC MOMENTS OF TRIGONOMETRIC B-SPLINE KERNELS

The asymptotic estimate for the de la Vallee Poussin-Schoenberg
operators Till. k depends on the estimate for the corresponding tri­
gonometric B-spline kernels em. k . For a fixed degree m an estimate for, Ill, k

as h := 2n/k -> 0 can be obtained by the same method as for the periodic
polynomial B-spline kernels. We shall omit the details which are slight
modifications of those given in Section 3, However, the analysis of the
asymptotic estimate for 'm. k as m -> 00 and mh -> IX E (a, n] requires
another approach. To this end we consider a more general trigonometric
B-spline p". 11 E No, which is a 2n-periodic function defined by

X E [0, 2n), (5,1)

where M" is the nth degree complex B-spline on the unit circle (see [16.
17] ). The function p" is a real-valued function supported on [0, (11 + 1) h],
h := 2n/k, and it can be expanded in the form

P ( x-) = '\' t e i ( v _. ,,/l)(x -Ill + I)) hil
n • ~ v ,

I'E Z

XE [0, 2n), (5.2)
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where

For 11=2m

LEE AND OSMAN

2/l /l sin(v-j)h/2
-k IT ( .) ,

j=O v - J
#; ~.

2/l /l sin( v - j ) h/2
-;}Jo (v-j) ,

otherwise.

P2",(:>;; + (2m + I) h/2)/t", = T"'.k(X), XER, (5.3 )

the trigonometric B-spline kernel defined by (104) and (1.5). The sequence
PI)' satisfies the recurrence relation

np/l(.x) =2 sin !xPn_l(x)+2sin Wn+ l)h-x)Pn_l(x-h), nEN

(5.4 )

(see [5]). Applying (SA) twice with n=2m followed by 11=2m-l, a
straightforward computation leads to the following relation for T",. k'

LEMMA 5.1. For mEN

2(2m - I) sin 2
~mh _ . 2 I . . •

------=--- T", k(X) - sm ,(.\ + (2m + I) h/2) T",_l k('\ + h)m . - .

+sin 2 W2m + 1) h/2 - x) Tm_l.k(X -h)

+ (cos x cos h/2 - cos mh) T",_ l.k(x), (5.5)

The next lemma gives a recurrence relation for the moments of the tri­
gonometric B-spline kernels.

LEMMA 5.2. Let m,aEN. If M 2j (Tm,k)=O(l/mj
) as m-HfJ and

mh -+ ~ E (0, n] for j ~ a; then

(5.6)
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where

A
_ 8( 2m - I} . 2! h

m - SIn 21'1'1
m

em. a= 8 cos2
O" ~h sin 2 H2m - 1) h + 4(cos hl2 -cos mh)

D = 32 (2a) sin 2 !h COS2
a-

2 !h sin 2 !(2m -1) hm.O" 2 2 2 4

Gm= 2 cos 1(2m - 1) h cos 2
O" ~h - 2 cos ~h.

(5.7)

(5.8 )

(5.9)

(5.1 0)

(5.11 )

Proof Multiplying (5.5) by 4(2 sin ~x)2a and integrating over the inter­
val [ -n, n], gives

(5.12)

where

II :=~ITt 4sin2~(x+(2m-l)h/2)(2sin~(x-h})2O"Tm_1k(x)dx
2n -Tt " ".

I, :=~ fTt 4 sin 2 ~((2m -1) hl2 - x)(2 sin hx +h))2O" Tm- 1 k(X) dx.
- 2n -Tt - -.

Expanding sin 2 ~(x + (2m - 1) h12) and (2 sin ~(x - h})2O" in powers of
2sin~x and taking into account that Tm.k is even and M 2}(Tm,k)=
O( 11m}), a straightforward calculation gives

6 (
2a) . 2 2 . I h . 2 I h 2(<7 -1) 1hM )+1 2 Sm (m-lh Sm :2 cos :2 2Ia-l)(Tm -l.k

(
2a) . 1 . I 'a 1 1h ( ( 1 )-4 1 slO:2(2m-l)hslO'5.hcos" - '5. M 2a Tm_I.k)+O moT+2 '

Since k n is even, it is clear that 12 = II' Substituting the estimates for II and
12 into (5.12) leads to (5.6). I
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LEMMA 5.3. Let m, a E N. As m -> cx) and mh --+ IX E (0, n],

Gm = -4 sin 2 !mh + 0 (~)

Am (1)-=-4+0 -
Gm m

(m -1) Em IT • I I ( 1 )__---'--=.c::.= -8am Sin 'lh cot 'imh + 0 -
Gm m

(m - 1)2 D m . IT = -8 (2a) (m sin 1h )2 + 0 (~)
Gm 2 m

_(m_-_I_)_(A-C.ne:-'-_C-,,-n:.:..;,.IT:....) _ 2( 1 . I h t 'h) + 0 ( I )- - m sm" co "m - .Gm - - m

Proof From (5.11)

Gm = 2( I - 2 sin 2 ~ (2m - I ) h) cos2IT VI - 2 cos 1h

= -4 sin 2 ~ (2m - 1) h + 0(h 2
)

= -4 sin 2 !mh + 0(mh 2
)

as m -> 00 and mh ---+ IX E (0, n].
The estimate (5.14) follows from (5.13) and

which is obtained directly from (5.7).
By (5.8) and (5.13)

(5.13)

(5.14)

(5.15)

(5.16 )

(5.17)

(5.18)

(m -1) Em. IT = -4(m -I) acos
21T

-.
1
~~ sin ~h sin ~(2m -I) h + 0 (~)

Gm Sin 'imh m

= -8a sin !h cot 1mh + 0 (~).

The estimate (5.16) is obtained in the same manner.
To prove (5.17), we first express
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using (5.7) and (5.9). Expanding sin 2 ~ (2m -I) h in terms of sin !mh,
cos !mh, sin ~ h, and cos ~ h, a straightforward simplification leads to

(m - I )(A m- em, G) = -(8 sin 2 !mh)(1 - m sin !h cot !mh) + 0 (~).

(5.19)

The estimate (5.17) now follows from (5.19) and (5.13). I

LEMMA 5.4. Let m, (]' EN, and suppose that

(2(]')! . I I (I)m'1M''1(rm k) =-- (I - m sm,h cot ,mh)'1 + 0 -
~ . (]'! - - m

asm~x andmh~O:E(O,Tr.]. Then

(m -1)<7+ J {M 2'1(r m.d - M 2'1(r m_ u)}

-(2(]')! .
= I)' (I-mslO Mcot ~mh)'1-1

((]' - . --

X(I- (msin!h)2 )+o(~).
sin ~mh sin !(m - I) h m

Proof Writing

(m_I)'1+1 {M2'1(rm.k)-M2'1(rm-U)}

=(m-I ){(m _1)'1 M 2'1(r m.k) - (m _1)'1 M 2'1(r m- u)}

(5.20 )

(5.21 )

and expanding (m - I r, the coefficient of M 2'1( r m. k) on the right of the
equation, in powers of m, leads to

(m - I r+ I {M2'1(r m.k ) - M 2'1(rm_l,k)}

= (m - I ){m'1M 2'1(r",.k) - (m - 1)'1 M 2'1(rm_. I,k)}

-mn'1 M 2'1(r m k) + 0 (~). m

(m - I )(2(]')! .
= (]'! {(l - m sm !h cot !mlJ)'1

-(1- (m -I) sin!h cot !(m -1) h)'1}

_(_2_(]'-)1!-' (I - m sin ~h cot ~mhr + 0 (~).
((]'- ). - - m

(5.22)
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The last equation IS obtained by applying the assumption (5.20). The
expression

(I-m sin ih cot imh)" - (1- (m -1) sin ih cot i(m-l) h)"

in (5.22) can be written in the form

{(m -1) sin!h cot i(m -1) h -m sin!h cot !mh}

,,-I

xL: (1-(m-l)sin!hcoq(m-l)hV
j~O

x (I -m sin ih cot imh)"-'-;

{
m sin 2 ! h . 1 I }

= . \ J . \ 1) h - Sill "h cot 2(m - 1) hsm 2m I Sill 2(m - -

x 0'( 1-m sin ih cot imh)"-l + 0 (~).

With this estimate, (5.22) becomes

(m _1)<7+ I {M2,,(rm . k) - M 2,,(rm _ I,k)}

2 , ( . I h)2
(0'). (1 . 'h I h)"-' mSlll 2= - m Sill - cot"m -.-~-.---,,.::----

(a-I)! 2 - sm!mhslll~(m-l)h

(2a)! . I I I' I I
- (a-I)! (1-m Sill 'i h cot 'i mh )"- m Slll'i h cot 'i(m-l) h

(2a)! . I 1 h" ( 1)- (1 - m Sill "h cot "m ) + 0 -
(0'-1)! - - m

which simplifies to (5.21). I

THEOREM 5.1. For m,jEN,

. (2j)! I 1 . (1 )ml M 2J{ rm k) =-.- (1 - m sin 2h cot "mh)J + 0 -
.]! - m

as m -? 00 and mh -? C( E (0, 11:].

(5.23)

Proof We shall establish the result by induction on j. When j = 1, (2.3)
gives
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and a straightforward simplification using (1.5) leads to

mM2( r m, k) = 2( 1 - m sin 1h cot 1mh ) + 0 (~),

Therefore (5,23) holds for j = 1.
Suppose that (5,23) holds for j ~ cr, Then by (5,6),

(m-1)<7+1 M2Ia+ll(rm-l.k)

(m-l)a+IA m
= G (M 2<7( r m, k) - M 2a( r m - l.k))

m

(5.24 )

Applying the results of Lemmas 5,3 and 5.4 and the inductive hypothesis
to each term on the right-hand side, the above equation simplifies to

(2cr + 2)! 'I I I ( I )= ,(I-mSlll'lhcot'lmh)a+ +0 -,
(cr+ I). • - m

The result now follows by induction, I

Proof of Theorem 2.5. It follows from (5.23) that for j EN

I
,' (2j)! ( IX IX)J
1m m I M 2J (r m,k)=-.,- 1--

2
cot-

2
'

m-Y. J.

where the limit is taken as m -> co and mh -> IX E (0, n]. Theorem 2.5 now
follows immediately from Theorem 3, I. I
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